
A Brief Introduction to Commitment Schemes in Decentralized

Data Storage

Dr. Chloe I. Avery

December 18, 2024

Contents

1 What is a Commitment Scheme? 1

2 Vector Commitments in Decentralized Data Storage 2

3 KZG Commitments 3

4 Further Reading 3

Abstract

This piece gives a brief introduction to commitment schemes, including vector commitments and
polynomial commitments, and discusses how they might be used in a decentralized data storage system.

1 What is a Commitment Scheme?

A commitment scheme is a protocol that is often used in cryptography which allows one party (the
committer) to commit to a value (a message) while keeping it hidden from others, with the ability to reveal
the committed value later to the other party (the verifier). Commitment schemes are characterized by two
properties:

• Binding: A commitment scheme is binding if the committer is unable to change the value of the
commitment once it has been made. There are two types of binding that a scheme may require:

– Computationally Binding: A commitment scheme is computationally binding if it is compu-
tationally infeasible to find another value that has the same commitment.

– Perfectly Binding: A commitment scheme is perfectly binding if there is no other value with
the same commitment.

• Hiding: A commitment scheme is hiding if the commitment reveals no information about the value
being committed to. There are two types of hiding that a scheme may require:

– Computationally Hiding: A commitment scheme is computationally hiding if, given the com-
mitment, it is computationally infeasible to find the value that was committed to.

– Perfectly Hiding: A commitment scheme is perfectly hiding if the commitment gives no infor-
mation at all about the value being committed to.

1



Commitment schemes have many applications, including zero-knowledge proofs, secure multi-party com-
putation, digital signatures, and decentralized data storage.

A simple example of a commitment scheme is this: Alice writes a message on a piece of paper and locks it
in a box. Alice gives the box to Bob, but retains the key. Later, to open the commitment, Alice can unlock
the box and show the message to Bob.

Now, suppose instead that your data is a vector [a0, . . . , an−1]. Sure, you could make a commitment
to this data as you otherwise would (by, for example, appending the data or by committing to each ai
individually). However, what if you wanted to make a commitment to the entire vector and then at the
reveal stage be able to reveal one element of the vector (ai for some i) without revealing the rest of the
vector. This idea is called a vector commitment. I like to think of these as a row of locked boxes and a
ring of keys, one key belonging to each box. A commitment can be made by handing the verifier the row of
boxes, and the contents of each box can be revealed by the committer handing the verifier the corresponding
key.

A great example of vector commitments is Merkle Trees, which I explain in my other piece, [2].

2 Vector Commitments in Decentralized Data Storage

In Orchid’s decentralized data storage system, the setup is this: Clients erasure code1 their data, thus
breaking it into pieces called erasure blocks, and give each erasure block to a different Provider. We call
this collection of Providers responsible for this data a cohort. Each Provider in the cohort regularly posts
commitments on chain, monitoring the commitments of the others in their cohort. Providers get paid to
participate in the repair of any lost data (for example, sending parts of their data to a new Provider if a
Provider has failed to make a commitment) as well as for storing data.

We use these commitments as proof that the Provider is still holding the erasure block in question. We
care mostly about the binding feature of commitment schemes, however, a corollary of the hiding feature in
some schemes is that the commitment is much smaller than the data being committed to. This is particularly
useful in systems like ours where commitments are posted on-chain.

In our system, rather than committing to the entire piece of the data, Providers can commit to a smaller
subset of the piece, chosen by a random beacon. The subset being chosen randomly provides assurances that
the Provider in question likely (with high probability) has the entire erasure-coded piece of data because the
Provider is making these commitments repeatedly. That is, it is unlikely that if the Provider was not storing
some or all of the data that they would be able to repeatedly make correct commitments.

However, Providers in the system will likely belong to multiple cohorts, therefore having to post multiple
commitments on chain during each epoch. Vector commitments allow providers to bundle commitments
together, committing to one polynomial for all of their data. Many vector commitment schemes (such as
Merkle Tree commitments) have the nice property that the commitment size does not change with the
number of elements in the vector, making it efficient for a Provider to make a commitment to data from
multiple Clients at once.

In our system, Clients are able to go offline for a period of time, and are assured by the incentive design
and self-repair mechanisms that their data will be there when they get back. When a Client is online,
the Provider can request payment from the Client by opening their outstanding commitments and sending
this proof that they made correct commitments to the Client directly. However, if a Client is offline and a
Provider wants to receive payment for their outstanding commitments, the Provider must post these proofs
(the opening/verification of the commitment) on-chain. Posting anything on-chain can get expensive, and
unfortunately, for many well-known vector commitment schemes (such as Merkle Tree commitments), the
size of the reveal scales with the size of the vector being committed to. Therefore, doing payment settlement
for even just one of a Provider’s Clients could be costly, as it depends on the number of Clients that the
Provider has. KZG commitments, which we discuss in Section 3, have the nice property that the proof size
is independent of the vector size, therefore dramatically reducing costs.

1Erasure coding is a useful technique for efficiently breaking data into overlapping pieces such that any large enough subset
of the pieces can be used to reconstruct the data.

2



3 KZG Commitments

Polynomial commitment schemes are a type of commitment scheme that allows one to make a commit-
ment to a polynomial specifically.

We can format our data as a vector of length n, [a0, . . . , an−1]. Then, there are two main ways of creating
a polynomial that contains the data.

The ai can be the coefficients of the polynomial:

P (x) =

n−1∑
i=1

aix
i = a0 + a1x+ · · ·+ an−1x

n−1

Or, the polynomial can interpolate the points (i, ai). That is, we can construct a polynomial which passes
through each of those points. To do this, for each i, we first construct a polynomial Qi(x) which evaluates
to 0 at each j ̸= i for j ∈ {0, . . . , n− 1} and evaluates to 1 at i:

Qi(x) =
∏

0≤j≤n−1
j ̸=i

x− j

i− j

Once we’ve done this, we can scale and sum these polynomials to get our polynomial P such that P (i) = ai
for each i ∈ {0, . . . , n− 1}:

P (x) =

n−1∑
i=0

aiQi(x)

KZG commitments, first introduced by and named for Aniket Kate, Gregory M. Zaverucha, and Ian
Goldberg in [4], are a particularly nice kind of polynomial commitment because they allow the committer
to reveal an evaluation of the polynomial which is verifiable without revealing the entire polynomial. When
the polynomial being committed to is one which interpolates points coming from a vector, the KZG commit-
ment is actually a vector commitment. That is, given a vector [a0, . . . , an−1], we know we can construct a
polynomial P such that P (i) = ai for each i ∈ {0, . . . , n− 1} and construct a KZG commitment to P . Then,
as a KZG commitment, the committer can reveal an evaluation of P (specifically, for some i that P (i) = ai)
without revealing the rest of P (and thus not revealing aj for j ̸= i).

4 Further Reading

References [3] and [5] give particularly nice explanations of how KZG commitments work, and [5] also
teaches the mathematical background necessary to understand them. Reference [6] discusses the EIP-4844
reference implementation of KZG commitments as used in Ethereum and discusses further how Orchid uses
KZG commitments in decentralized data storage, from a coding perspective. Finally, reference [1] gives more
background on Orchid’s decentralized data storage project and [2] discusses precisely how KZG commitments
are used in Orchid storage, beyond what we describe in Section 2.

References

[1] Chloe Avery and Justin Sheek. Orchid Storage: A New Open Source Initiative For Decentralized,
Incentivized Data Storage. https://www.orchid.com/storage-litepaper-latest.pdf.

[2] Chloe Avery and Justin Sheek. Storage Auditing Using Merkle Trees and KZG Commitments. https:
//www.orchid.com/storage-auditing-latest.pdf.

[3] Dankrad Feist. KZG Polynomial Commitments. https://dankradfeist.de/ethereum/2020/06/16/

kate-polynomial-commitments.html.

[4] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-Size Commitments to Polynomials
and Their Applications. https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf.

3

https://www.orchid.com/storage-litepaper-latest.pdf
https://www.orchid.com/storage-auditing-latest.pdf
https://www.orchid.com/storage-auditing-latest.pdf
https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
https://dankradfeist.de/ethereum/2020/06/16/kate-polynomial-commitments.html
https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf


[5] Luksgrin. A quick insight on Algebra and KZG Commitments. https://github.com/luksgrin/

opensense-algebra-and-kzg/blob/main/algebra_and_kzg.ipynb.

[6] Patrick Niemeyer. Based Blobs - Using Polynomial Commitments in Your Projects with the EIP-4844
KZG Reference Libs. https://pat.net/ckzg/.

4

https://github.com/luksgrin/opensense-algebra-and-kzg/blob/main/algebra_and_kzg.ipynb
https://github.com/luksgrin/opensense-algebra-and-kzg/blob/main/algebra_and_kzg.ipynb
https://pat.net/ckzg/

	What is a Commitment Scheme?
	Vector Commitments in Decentralized Data Storage
	KZG Commitments
	Further Reading

